Effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm.

نویسندگان

  • Yue Li
  • Yun-Ying Xie
  • Ru-Xian Chen
  • Hong-Zhang Xu
  • Guo-Ji Zhang
  • Jin-Zhe Li
  • Xiao-Mian Li
چکیده

OBJECTIVE To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. METHODS Micro-dilution method was used to determine the minimal inhibitory concentrations (MICs) of sansanmycin, gentamycin, carbenicillin, polymyxin B, roxithromycin, piperacillin, and tazobactam. PA1 and PA27853 biofilms were observed under optical microscope after staining and under SEM after treatment with sansanmycin at different dosages and combined treatment with sansanmycin and roxithromycin. Viable bacteria in PA1 and PA27853 biofilms were counted after treatment with sansanmycin at different dosages or combined treatment with sansanmycin and roxithromycin. RESULTS The MIC of sansanmycin was lower than that of gentamycin and polymyxin B, but was higher than that of carbenicillin. Roxithromycin enhanced the penetration of sansanmycin to PA1 and PA27853 strains through biofilms. PA1 and PA27853 biofilms were gradually cleared with the increased dosages of sansanmycin or with the combined sansanmycin and roxithromycin. CONCLUSION Sub-MIC levels of roxithromycin and sansanmycin substantially inhibit the generation of biofilms and proliferation of bacteria. Therefore, combined antibiotics can be used in treatment of intractable bacterial infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa

Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...

متن کامل

Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...

متن کامل

In vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa

Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...

متن کامل

Effects of Long-Term, Low-Dose Macrolide Treatment on Pseudomonas aeruginosa PAO1 Virulence Factors In Vitro

Pseudomonas aeruginosa (P. aeruginosa) is a common cause of chronic airway infections in patients with pulmonary disorders such as diffuse panbronchiolitis (DPB) and cystic fibrosis (CF). Long-term, low-dose macrolide treatment has markedly increased long-term survival of patients with DPB. Consequently, researchers are interested in using macrolides to treat CF patients. Previous studies have ...

متن کامل

Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

Objective(s): Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs) on biofilm. Materials and Methods: Aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical and environmental sciences : BES

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2009